Precise Calibration of Robots with small link lengths using Kinematic Extensions

نویسندگان

  • Visak Chadalavada
  • Vikash Kumar
چکیده

Complex anthropomorphic robotic hands with small link lengths and large number of degrees of freedom pose a unique challenge for calibration. The problem is interesting because the small magnitude of joint motion produced by small robots are difficult to capture by external sensors such as motion tracking systems. There is a need for a simple yet effective solution to this problem. In this paper, we show that a simple mechanical extension of the kinematic chain can be utilized to address this issue with good results. Using Standard motion tracking system and least squares optimization techniques, we identify joint sensor parameters. We also use finger tip loop closure distance, which is the distance between the thumb finger tip and the rest of the finger tips taken individually as an aid in estimating the true joint angles to calibrate the joint position sensors mounted on the hand. The results obtained are a significant improvement over the manual sensor calibration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning

The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...

متن کامل

Estimation and Calibration of Robot Link Parameters with Intelligent Techniques

Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy ...

متن کامل

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

Accurate Task-Space Tracking for Humanoids with Modeling Errors Using Iterative Learning Control

Precise task-space tracking with manipulator-type systems requires an accurate kinematic model. In contrast to traditional manipulators, sometimes it is difficult to obtain an accurate kinematic model of humanoid robots due to complex structure and link flexibility. Also, prolonged use of the robot will lead to some parts wearing out or being replaced with a slightly different alignment, thus t...

متن کامل

Calibrating a Multi-arm Multi-sensor Robot: A Bundle Adjustment Approach

Complex robots with multiple arms and sensors need good calibration to perform precise tasks in unstructured environments. The sensors must be calibrated both to the manipulators and to each other, since fused sensor data is often needed. We propose an extendable framework that combines measurements from the robot’s various sensors (proprioceptive and external) to calibrate the robot’s joint of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015